Kurzusok
Tantárgy neve | Kurzus kód |
---|---|
Dinamikai rendszerek | BMETE93MM02/T0 |
Dinamikai rendszerek | BMETE93MM02/T1 |
Matematika MSc építőmérnököknek | BMETE90MX33/EV |
Valószínűségszámítás 1 | BMETE95AM29/ENV |
Valószínűségszámítás 1 | BMETE95AM29/TV |
Oktatás
Valószínűségszámítás (Matematikus és Fizikus BSc)
Dinamikai rendszerek (Matematikus MSc)
Matematika MSc Építőmérnököknek
Dynamical systems, Hyperbolic systems with singularities, Statistical properties, Billiard dynamics, Applications to statistical physics
Kiemelt publikációk
Bálint Péter, Borbély Gábor, Némedy Varga András; Statistical properties of the system of two falling balls; CHAOS 22:(2) Paper 026104. (2012)
Bálint Péter, Tóth Imre Péter; Example for Exponential Growth of Complexity in a Finite Horizon Multi-dimensional Dispersing Billiard; NONLINEARITY 25: pp. 1275-1297. (2012)
Balint P, Chernov N, Dolgopyat D; Limit Theorems for Dispersing Billiards with Cusps; COMMUNICATIONS IN MATHEMATICAL PHYSICS 308:(2) pp. 479-510. (2011)
Péter Bálint, Miklós Halász, Jorge Hernández-Tahuilán, David P Sanders; Chaos and stability in a two-parameter family of convex billiard tables; NONLINEARITY 24:(5) pp. 1499-1522. (2011)
Bálint Péter, Kevin K. Lin, Lai-Sang Young; Ergodicity and Energy Distributions for some Boundary Driven Integrable Hamiltonian Chains; COMMUNICATIONS IN MATHEMATICAL PHYSICS 294:(1) pp. 199-228. (2010)
Bálint P, Tóth IP; Exponential decay of correlations in multi-dimensional dispersing billiards; ANNALES HENRI POINCARE 9:(7) pp. 1309-1369. (2008)
Balint P, Gouezel S; Limit theorems in the stadium billiard; COMMUNICATIONS IN MATHEMATICAL PHYSICS 263:(2) pp. 461-512. (2006)
Bálint P, Tóth IP; Correlation decay in certain soft billiards; COMMUNICATIONS IN MATHEMATICAL PHYSICS 243:(1) pp. 55-91. (2003)
Balint P, Chernov N, Szasz D, Toth IP; Geometry of multi-dimensional dispersing billiards; ASTERISQUE 286: pp. 119-150. (2003)
Bálint P, Chernov D, Szász D, Tóth IP; Multi-Dimensional Semi-Dispersing Billiards: Singularities and the Fundamental Theorem; ANNALES HENRI POINCARE 3:(3) pp. 451-482. (2002)
Linkek
Személyes honlap: http://www.math.bme.hu/~pet