Criticality in random transposition random walk

Időpont: 
2018. 03. 08. 16:15
Hely: 
H306
Előadó: 
Dominic Yeo (Technion, Haifa)

The random walk on the permutations of [N] generated by the transpositions was shown by Diaconis and Shahshahani to mix with sharp cutoff around N log N /2 steps. However, Schramm showed that the distribution of the sizes of the largest cycles concentrates (after rescaling) on the Poisson-Dirichlet distribution PD(0,1) considerably earlier, after (1+\epsilon)N/2 steps. We show that this behaviour truly emerges precisely during the critical window of  (1+\lambda N^{-1/3}) N/2 steps, as \lambda \rightarrow\infty. Our methods are rather different, and involve an analogy with the classical Erdos-Renyi random graph process, the metric scaling limits of a uniformly-chosen connected graph with a fixed finite number of surplus edges, and analysing the directed cycle structure of large 3-regular graphs. Joint work with Christina Goldschmidt.